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1. Introduction

Let Mn(S) denote the set of n × n matrices with entries from a set S. An inverse eigenvalue

problem aims to reconstruct a matrix A ∈Mn(S) from prescribed spectral data. Specifically, given

a set Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, such that σj ∈ C and µj ∈ N, for 1 ≤ j ≤ k, we aim to

reconstruct a matrix A ∈ Mn(S) that has the numbers σj as its eigenvalues, with multiplicity µj ;

such a matrix solves the inverse eigenvalue problem, and we say that A realizes Σ.

The spectral data involved may consist of the complete or only partial information of eigenvalues

or eigenvectors [5]. We aim to reconstruct a matrix that fulfills a specific structure as well as that

given spectral property. For instance, an inverse eigenvalue problem is always solvable by a matrix

A ∈ Mn(C); given a set Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, one can always construct a diagonal

matrix A ∈ Mn(C) with the numbers σj , with multiplicity µj , along the diagonal. When we

impose structural constraints on the realizing matrices, the inverse eigenvalue problem becomes

more interesting and complex. Now, it is natural to wonder whether there exists a real matrix A

that realizes Σ - we show that this is also an easy question to answer.

Theorem 1.1. Given a set Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, with σj ∈ C and
∑k

j=1 µj = n,

there exists A ∈Mn(R) that realizes Σ if and only if for every pair (σj , µj) in Σ, the pair (σ̄j , µj),

where σ̄j is the complex conjugate of σj, is also in Σ.

Proof. First, suppose that for every pair (σj , µj) in Σ, the pair (σ̄j , µj), where σ̄j is the complex

conjugate of σj , is also in Σ. For σj nonreal, we write σj and σ̄j in exponential form, σj = rje
iθj

and σ̄j = rje
−iθj , and consider the rotation matrix

Aσj =

rj cos(θj) −rj sin(θj)

rj sin(θj) rj cos(θj)

 , (1)

which has eigenvalues λ1 = σj and λ2 = σ̄j ; that is, Aσj realizes the set {(σj , 1), (σ̄j , 1)}. For any

σj that are real, the 1 × 1 matrix [σj ] realizes the set {(σj , 1)}. Now, using (1) and the fact that

the eigenvalues of a block-diagonal matrix are the eigenvalues of each of the diagonal blocks, we

construct a block-diagonal matrix A, letting
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A =



B1

B2

B3
. . .

Bj

Bj+1

. . .

Bk


n×n

,

and such that, for any σj nonreal,

Bi =


Aσj 0 0 0

0 Aσj 0 0

0 0
. . . 0

0 0 0 Aσj


2µj×2µj

,

which realizes the set {(σj , µj), (σ̄j , µj)}, and for any σj ∈ R,

Bi =


σj 0 0 0

0 σj 0 0

0 0
. . . 0

0 0 0 σj


µj×µj

,

which realizes the set {(σj , µj)}. Thus, by our construction, the matrix A has real entries and

realizes Σ, solving the inverse eigenvalue problem.

Proving the converse, suppose that there exists A ∈ Mn(R) that realizes Σ. Then the charac-

teristic polynomial of A, given by

PA(λ) =
k∏
j=1

(λ− σj)µj ,
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has real coefficients, and thus its nonreal roots come in conjugate pairs. To check that the multi-

plicities of the nonreal roots and their respective conjugate roots agree, we can write

PA(λ) = (λ− σj)(λ− σ̄j)Q(1)(λ),

where σj is an arbitrary, nonreal root of PA(λ), and Q(1)(λ) is a real polynomial, since

(λ− σj)(λ− σ̄j) = λ2 − 2<(σj)λ+ |σj |2 ∈ R[λ].

Now if σj is not a root of Q(1)(λ), then there is nothing more to prove; otherwise, suppose that σj

is a root of Q(1)(λ). We may write

Q(1)(λ) = (λ− σj)(λ− σ̄j)Q(2)(λ),

where Q(2)(λ) ∈ R[λ], and thus

PA(λ) = (λ− σj)2(λ− σ̄j)2Q(2)(λ).

Repeating this process until σj is no longer a root of the polynomial Q(i)(λ), we end up with

PA(λ) = (λ− σj)µj (λ− σ̄j)µjR(λ), (2)

where R(λ) ∈ R[λ].

Now if σ̄j were a root of R(λ), which is a real polynomial, then σj must also be a root of R(λ),

which is impossible; and so σ̄j cannot be a root of R(λ). Thus, from (2) we have shown that for

every pair (σj , µj) in Σ, the pair (σ̄j , µj), where σ̄j is the complex conjugate of σj , is also in Σ. �

Although we solved the inverse eigenvalue problem with real matrices without any difficulty, in

applied mathematics, it is often desirable to impose additional structure on the realizing matrices.

In particular, we shall require that the realizing matrices be real, n × n, and with nonnegative

entries; this sets the stage for us to study the nonnegative inverse eigenvalue problem, henceforth

referred to as the NIEP, its history, some results, as well as discuss some open problems.

We shall call elements in the set Mn(R+) nonnegative matrices. The NIEP is a problem in

which, given a set Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, with σj ∈ C and
∑k

j=1 µk = n, we aim to

reconstruct a matrix A ∈ Mn(R+) that realizes Σ. In 1937, Kolmogorov asked when is a given
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complex number z an eigenvalue of some nonnegative matrix, with Suleimanova [7] extending the

question in 1949 to what is now referred to as the NIEP.

Associated with the NIEP are two fundamental questions - the theoretical question of solvability

and the practical question of computability. On the theoretical side of the problem, we aim to find

necessary and sufficient conditions for which the NIEP has a solution. On the practical side, we

want to develop a process for which, knowing a priori the given spectral data, a matrix can be

constructed numerically [5]. To this day, both questions of interest remain difficult to answer. At

present, the NIEP is open for the case n ≥ 5.

Because of the wide range of applicability of the NIEP, many subproblems of great interest have

developed, e.g., the symmetric nonnegative inverse eigenvalue problem (SNIEP), which aims to

reconstruct a symmetric, nonnegative matrix that realizes Σ, and the stochastic inverse eigenvalue

probem (StIEP), which aims to reconstruct a stochastic matrix that realizes Σ.

This thesis is organized as follows. In Section 2, we discuss the solvability of the NIEP for the

case n = 2 and compute the realizing matrices explicitly. In Section 3, we present some important

theorems that help towards solving the NIEP for generalized n. The main theorems that will

be used in this thesis are the Perron-Frobenius theorem, which tells us that every nonnegative

n× n matrix has a dominant, nonnegative eigenvalue with a corresponding entrywise-nonnegative

eigenvector, and a theorem by Nazari and Sherafat [6] for combining eigenvalues of two nonnegative

matrices. We then use these theorems to develop an algorithm [4] for solving the real nonnegative

inverse eigenvalue problem (RNIEP). In Section 4, we investigate the solvability of the NIEP for

the case n = 3. Concluding remarks are given in Section 5.

2. Solvability of the NIEP, for n = 2

We begin our study of the NIEP for small n; specifically, we consider the case n = 2 and investigate

the solvability of the problem. If a solution exists, we aim to reconstruct the realizing matrix.

Theorem 2.1. Given a set Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, with
∑k

j=1 µj = 2, there exists

A ∈M2(R+) that realizes Σ if and only if σ1 and σ2 ∈ R and, up to ordering, 0 ≤ |σ2| ≤ σ1.
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Proof. First, suppose that there exists A ∈M2(R+) that realizes Σ and denote the matrix as

A =

α β

γ µ

 ,

with α, β, γ, µ ≥ 0. Since A is real, by Theorem 1.1, σ1 and σ2 must be either a complex conjugate

pair or they are both real. Suppose they are a complex conjugate pair and let σ1 = ξ + iφ and

σ2 = ξ− iφ, with φ 6= 0. As the determinant of A is equal to the product of its eigenvalues and the

trace of A is equal to the sum of its eigenvalues, we have the relations

det(A) = αµ− βγ = σ1σ2 = (ξ + iφ)(ξ − iφ) = ξ2 + φ2 (3)

tr(A) = α+ µ = σ1 + σ2 = (ξ + iφ) + (ξ − iφ) = 2ξ. (4)

Now we may multiply (4) by µ and subtract it from (3), which gives us the relation

−βγ − µ2 = ξ2 + φ2 − 2ξµ

=⇒ −βγ = ξ2 + φ2 − 2ξµ+ µ2

=⇒ −βγ = (ξ − µ)2 + φ2. (5)

Since we assumed that φ 6= 0, then the right-hand side of (5) is strictly positive, which implies that

either β or γ < 0, which is a contradiction. Thus, σ1 and σ2 are both real.

The characteristic polynomial of A is given by

PA(λ) = det[A− λI] = (α− λ)(µ− λ)− βγ = λ2 − (α+ µ)λ+ (αµ− βγ),

and since σ1 and σ2 are real roots of PA(λ), they have the form (up to ordering)

σ1 =
(α+ µ) +

√
(α+ µ)2 − 4(αµ− βγ)

2
(6)

σ2 =
(α+ µ)−

√
(α+ µ)2 − 4(αµ− βγ)

2
(7)

with (α+µ)2−4(αµ−βγ) ≥ 0. Moreover, (α+µ) ≥ 0 by assumption. If (α+µ)2−4(αµ−βγ) = 0,

then Σ = {(σ1, 2)}, with σ1 = α+µ
2 , which implies that 0 ≤ σ1. Otherwise, (α+µ)2−4(αµ−βγ) > 0
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and Σ = {(σ1, 1), (σ2, 1)}. Adding (6) and (7) gives

σ1 + σ2 = (α+ µ) ≥ 0, (8)

and subtracting (7) from (6) gives

σ1 − σ2 =
√

(α+ µ)2 − 4(αµ− βγ) ≥ 0. (9)

Thus, from (8) and (9) we have that

−σ1 ≤ σ2 ≤ σ1, (10)

which implies that 0 ≤ |σ2| ≤ σ1.

Proving the converse, suppose that (up to ordering) σ1 and σ2 ∈ R and 0 ≤ |σ2| ≤ σ1. If the σi

are not distinct, then Σ = {(σ1, 2)} and by assumption, 0 ≤ σ1. Thus, the diagonal matrix

A =

σ1 0

0 σ1



is nonnegative and realizes Σ. Otherwise, suppose that the σi are distinct, so that Σ =

{(σ1, 1), (σ2, 1)}. We take a constructive approach to show the existence of the realizing matrix A

and compute it explicitly. To this end, we consider the matrix

A =

a11 a12

a21 a22



and try to reconstruct the entries a11, a12, a21, a22 such that the relations

tr(A) = σ1 + σ2 = a11 + a22 (11)

det(A) = σ1σ2 = a11a22 − a12a21 (12)

are fulfilled. If we are successful in doing so, then A will have σ1 and σ2 as its eigenvalues.

From (11), a suitable choice for the entries a11 and a22 is

a11 = a22 =
σ1 + σ2

2
,
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which gives the matrix

A =

σ1+σ2
2 a12

a21
σ1+σ2

2

 .

Now with the entries a11 and a22 fixed, we consider the second relation (12), which becomes

det(A) = σ1σ2 = a11a22 − a12a21 =
(σ1 + σ2)

2

4
− a12a21

=⇒
(
σ1 − σ2

2

)2

= a12a21,

and we may let

a12 = a21 =
σ1 − σ2

2
.

Thus, by our construction, the matrix

A =

σ1+σ2
2

σ1−σ2
2

σ1−σ2
2

σ1+σ2
2



has real entries and realizes Σ. Moreover, A is symmetric, and from the assumption that 0 ≤ |σ2| ≤

σ1, we see that the entries of A are nonnegative, and this completes the proof. �

Corollary. For n=2, the symmetric nonnegative inverse eigenvalue problem (SNIEP) has a solu-

tion if and only if the nonnegative inverse eigenvalue problem (NIEP) has a solution.

For the next corollary [1], we study a doubly-stochastic inverse eigenvalue problem and provide

necessary and sufficient conditions for there to exist a doubly-stochastic matrix that realizes Σ.

Recall that a doubly-stochastic matrix has nonnegative entries, with the additional structure that

the rows and columns each sum to one; thus, any doubly-stochastic matrix is of the form
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1− ζ ζ

ζ 1− ζ

 ,

with ζ ∈ [0, 1].

Corollary. Given a set Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, with
∑k

j=1 µj = 2, there exists a

doubly-stochastic matrix A ∈ M2(R+) that realizes Σ if and only if, up to ordering, σ1 = 1 and

σ2 ∈ R, with |σ2| ≤ 1.

Proof. First, suppose that there exists a doubly-stochastic matrix A ∈M2(R+) that realizes Σ and

let the matrix be

A =

1− ζ ζ

ζ 1− ζ

 ,

for ζ ∈ [0, 1]. Its characteristic polynomial is

PA(λ) = (1− ζ − λ)2 − ζ2 = (1− λ)(1− λ− 2ζ),

which has roots σ1 = 1 and σ2 = 1− 2ζ.

If ζ = 0, then Σ = {(σ1, 2)}, with σ1 = 1. If ζ 6= 0, then Σ = {σ1, 1), (σ2, 1)} with σ1 = 1. To

check σ2, we solve for ζ, which gives ζ = 1−σ2
2 , and thus the matrix

A =

1− 1−σ2
2

1−σ2
2

1−σ2
2 1− 1−σ2

2


realizes Σ. As A is doubly-stochastic, it has nonnegative entries, which forces σ2 to be real and

that

0 ≤ 1− σ2
2

≤ 1,

which implies that |σ2| ≤ 1.

Proving the converse, suppose that Σ = {(σ1, 2)} with σ1 = 1. Then the identity matrix
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A =

1 0

0 1



is doubly-stochastic and realizes Σ. Otherwise, Σ = {(σ1, 1), (σ2, 1)}, and (up to ordering) σ1 = 1

and σ2 ∈ R, with |σ2| ≤ 1. We apply Theorem 2.1, and thus

A =

1+σ2
2

1−σ2
2

1−σ2
2

1+σ2
2

 ,

which is clearly doubly-stochastic, realizes Σ. �

3. Towards solving the NIEP, for generalized n

In this section, we give some important results that are used to understand the NIEP in full

generality. We start with proving the so-called JLL inequality ([2], [9]).

Theorem 3.1. Given a set Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)} and A ∈Mn(R+), suppose that A

realizes Σ. We define the rth moment sr(Σ) of Σ by

sr(Σ) =
k∑
j=1

µjσ
r
j = tr(Ar), r = 1, 2, ... (13)

Then

[sr(Σ)]m ≤ nm−1srm(Σ), r,m = 1, 2, ... (14)

Proof. We decompose the matrix A into A = C + D such that the matrix D is diagonal, with the

diagonal entries aii of A along the diagonal of D, and thus the matrix C has the off-diagonal entries

(aij , i 6= j) of A and 0s along its diagonal. Now since A is nonnegative, then so is C+D; moreover,

the matrices Am, Cm, and Dm are all nonnegative for m ∈ N. Then it follows that

Am = (C +D)m = (C +D)(C +D)...(C +D) = Cm +M+Dm,
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whereM is a nonnegative matrix. This implies that Am−Cm−Dm is a nonnegative matrix. Thus,

we have that

tr (Am − Cm −Dm) = tr(Am)− tr(Cm)− tr(Dm) ≥ 0

=⇒ tr(Am)− tr(Dm) ≥ tr(Cm)

=⇒ tr(Am)−
n∑
i=1

amii ≥ tr(Cm)

=⇒ sm(Σ)−
n∑
i=1

amii ≥ tr(Cm). (15)

Now, for p = m and q = m
m−1 , we have that 1

p + 1
q = 1, and we can apply Holder’s inequality to

observe that

n∑
i=1

aii =

n∑
i=1

aii × 1 ≤

(
n∑
i=1

amii

) 1
m
(

n∑
i=1

1
m

m−1

)m−1
m

=

(
n∑
i=1

amii

) 1
m (

n
m−1
m

)
.

=⇒

(
n∑
i=1

aii

)m
= [tr(A)]m = [s1(Σ)]m ≤ nm−1

n∑
i=1

amii . (16)

Multiplying (15) by nm−1 and using (16), it follows that

nm−1sm(Σ)− nm−1
n∑
i=i

amii ≥ nm−1tr(Cm) ≥ 0

=⇒ nm−1sm(Σ)− [s1(Σ)]m ≥ 0

=⇒ [s1(Σ)]m ≤ nm−1sm(Σ). (17)
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Finally, we may apply (17) to the nonnegative matrix Ar to obtain

[sr(Σ)]m ≤ nm−1srm(Σ), r,m = 1, 2, ...

as desired. �

We now prove Perron’s theorem for entrywise positive n × n matrices - henceforth referred to

as positive matrices - and the Perron-Frobenius theorem for nonnegative n × n matrices [3]. We

will write v ≥ 0 or v > 0 for vectors v with nonnegative or positive components, respectively.

Moreover, when we write a vector inequality for vectors in Rn, it means that the inequality holds

for all corresponding components. We begin with a lemma.

Lemma 3.2. Let A be an n× n matrix. Denote by p(A) to be the set of all nonnegative numbers

λ for which there is a nonnegative vector x 6= 0 such that

Ax ≥ λx, x ≥ 0. (18)

Then for A positive,

(i) p(A) is nonempty and contains a positive number,

(ii) p(A) is bounded,

(iii) p(A) is closed.

Proof. Consider an arbitrary positive vector x; since A is positive, Ax is a positive vector. Then

(18) will hold by taking λ > 0 and sufficiently small, proving (i) of the lemma.

Now since both sides of (18) are linear in x, we may normalize x so that

ζx =
∑

xi = 1, ζ = (1, ..., 1).

Then multiplying (18) by ζ on the left gives us:

ζAx ≥ λζx = λ. (19)

Denote the largest component of ζA by b; then we have that bζ ≥ ζA. Applying this to (19), we

have that

bζx ≥ λζx = λ

=⇒ b ≥ λ,
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which shows that the set p(A) is bounded, proving part (ii) of the lemma.

To prove part (iii) of the lemma, consider a convergent sequence λn, converging to λ, in the set

p(A); by definition there is a corresponding xn 6= 0 such that (18) holds:

Axn ≥ λnxn, xn ≥ 0. (20)

We may assume that the xn are normalized:

ζxn = 1.

Now, the set of nonnegative xn, normalized, is a closed and bounded set in Rn, and thus it is

compact. Then a subsequence of xn converges to a nonnegative x, also normalized, while λn

converges to λ; and passing to the limit of (20), we have that x, λ satisfy (18). Therefore, the set

p(A) is closed, proving part(iii) of the lemma. �

Theorem 3.3. (Perron’s theorem) Every positive n × n matrix A has a dominant eigenvalue,

denoted by σ(A), which has the following properties:

(i) σ(A) is real and positive, and it has an associated eigenvector h with positive entries:

Ah = σ(A)h, h > 0.

(ii) σ(A) is a simple eigenvalue.

(iii) Every other eigenvalue σj of A is strictly less than σ(A) in absolute value:

|σj | < σ(A).

(iv) For every other eigenvalue σj of A, there does not exist an associated eigenvector f such that

all its components are nonnegative.

Proof. Let A be a positive n × n matrix. The set p(A) from Lemma 3.2 is closed and bounded,

and thus it has a maximum λmax. By part(i) of Lemma 3.2, we know that λmax > 0. We will show

that λmax is the dominant eigenvalue of A.
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First, we show that λmax is an eigenvalue of A. Since (18) is satisfied by λmax, there is a

nonnegative vector h such that

Ah ≥ λmaxh, h ≥ 0, h 6= 0. (21)

We show that equality holds in (21); suppose, for contradiction, in the kth component:

∑
aijhj ≥ λmaxhi, i 6= k (22)

∑
akjhj > λmaxhk. (23)

Define the vector x = h + εek, where ε > 0 and ek has kth component equal to 1, and all other

components equal to zero. Now sinceA is positive, replacing h by x in (21) increases each component

of the left-hand side: Ax > Ah, while on the right-hand side, only the kth component is increased

when h is replaced by x. Then it follows from (22) and (23) that, for ε > 0 and sufficiently small,

we have that

Ax > λmaxx, (24)

and since this inequality is strict, there exists δ > 0 and sufficiently small such that

Ax > (λmax + δ)x. (25)

This implies that (λmax + δ) belongs to the set p(A), which contradicts the fact that λmax is the

maximum in the set. Thus, (21) must be an equality, and this proves that λmax is an eigenvalue

of A, with a corresponding eigenvector h that is nonnegative. We now show that the eigenvector h

is, in fact, positive. Since A is positive and h ≥ 0, h 6= 0, then it is clear that Ah > 0. But since

Ah = λmaxh, and since λmax is positive, then this forces h to be positive, which proves part(i) of

Theorem 3.3.

Next, we prove that λmax is a simple eigenvalue. We claim that all eigenvectors of A with

eigenvalue λmax must be proportional to h; suppose, for contradiction, that there exists another

eigenvector y with eigenvalue λmax that is not a scalar-multiple of h. Then we may consider the

eigenvector h + cy, with c chosen suitably so that h + cy ≥ 0 but that one of the components of

h+cy is zero; but this contradicts the fact that an eigenvector of A corresponding to the eigenvalue

λmax is not only nonnegative but also positive.
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To complete the proof of part(ii), we show that A has no generalized eigenvectors for the eigen-

value λmax; that is, a vector y such that

Ay = λmaxy + ch. (26)

In (26) we may replace y with −y if necessary to ensure that c > 0; and by replacing y with y+ bh

if necessary we can make sure that y is positive. Then it follows from (26), and the fact that h > 0,

that Ay > λmaxy, which implies that there exists δ > 0 and sufficiently small such that

Ay > (λmax + δ)y.

This shows that (λmax+δ) is in the set p(A), which contradicts the fact that λmax is the maximum

of p(A). Thus, there are no generalized eigenvectors y with corresponding eigenvalue λmax, and

this completes the proof of part(ii) of Theorem 3.3.

To prove part(iii) of Theorem 3.3, let κ be another eigenvalue of A that is not equal to λmax,

with y a corresponding eigenvector, so that

Ay = κy

(here κ and the components of y may be complex numbers.)

Then we have that the ith component of the vector Ay is given by

∑
j

aijyj = κyi,

and by the triangle inequality, we have that

∑
j

aij |yj | ≥

∣∣∣∣∣∣
∑
j

aijyj

∣∣∣∣∣∣ = |κyi| = |κ| |yi| , (27)

which, by comparison with (18) of Lemma 3.2, shows that |κ| is in the set p(A).

Now suppose that |κ| = λmax. Then we have that the vector

y = (|y1|, |y2|, ..., |yn|)

17



is an eigenvector of A corresponding to the eigenvalue λmax, and so it must be proportional to h,

giving us

|yi| = chi. (28)

Moreover, the first inequality in (27) becomes an equality – and it is easy to show that this triangle

equality holds if and only if all the components yi have the same complex argument, so that

yi = |yi|eiθ.

Now combining this with (28), we get that

yi = chie
iθ

=⇒ y = ceiθh

=⇒ Ay = κy = A(ceiθ)h = (ceiθ)Ah = ceiθλmaxh = ceiθλmax
1

ceiθ
y = λmaxy.

Thus, we see that κ = λmax, which proves part(iii) of Theorem 3.3.

To prove part(iv), we recall that the inner product < ·, · > of eigenvectors of A and At for

distinct, real eigenvalues is zero, since for an eigenvector x of A with real eigenvalue a and for an

eigenvector y of At with real eigenvalue b, we know that

< Ax, y >=< x,Aty >

=⇒ < ax, y >=< x, by >

=⇒ a < x, y >= b̄ < x, y >, (29)

which shows that < x, y >= 0, if a 6= b. Now since A is assumed to be positive, then At is also

positive; moreover, as A and At are similar, we know that they have the same eigenvalues. In

particular, At has the dominant eigenvalue σ(A) – and we know that this dominant eigenvalue has

a corresponding positive eigenvector ψ. Now, consider any other eigenvalue σj , different from the

dominant eigenvalue, with corresponding eigenvector f . Using the fact from (29), since the positive

eigenvector ψ cannot annihilate a nonnegative - and nonzero - eigenvector f , then there cannot

possibly be another nonnegative eigenvector f corresponding to an eigenvalue that’s different from

the dominant eigenvalue, and this completes the proof of Theorem 3.3. �
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Theorem 3.4. (Perron-Frobenius theorem) Every nonnegative n × n matrix A, A 6= 0, has a

dominant eigenvalue σ(A) with the following properties:

(i) σ(A) is real and nonnegative, and has a corresponding eigenvector h with nonnegative entries:

Ah = σ(A)h, h ≥ 0 (30)

(ii) Every other eigenvalue κ is less than or equal to σ(A) in absolute value:

|κ| ≤ σ(A). (31)

Proof. Let A be a nonnegative n× n matrix. We approximate A by a convergent sequence An of

entrywise-positive matrices. Since the characteristic polynomials of An converge to the character-

istic polynomial of A, we know that the eigenvalues of An converge to the eigenvalues of A. Now

define

σ(A) = lim
n→∞

σ(An), (32)

where, just as in Perron’s theorem, σ(A) denotes the dominant eigenvalue of A and, similarly,

σ(An) denotes the dominant eigenvalue of An.

To prove part(i), we use the dominant eigenvector hn of An, corresponding to the dominant eigen-

value σ(An), normalized:

ζhn = 1, ζ = (1, 1, ...1).

This finite set of n eigenvectors is trivially compact, and so a subsequence of hn converges to a

limit vector h, while σ(An) converges to σ(A), as defined in (32). Since h is the limit of normalized

positive vectors, it is a nonnegative vector. Moreover, each hn satisfies

Anhn = σ(An)hn. (33)

Now as n→∞ we obtain the relation (30), which proves part(i).

From (33), as n → ∞, we may apply part(iii) of Perron’s theorem to An, and the inequality in

part(ii) of Theorem 3.4 is immediate. �
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An algorithm for the RNIEP: Now we give an algorithm to solve the RNIEP; this method is

due to the recent work of Lin [4]. After developing this method, we demonstrate the algorithm

with an example. First, we prove a useful theorem by Nazari and Sherafat [6] for combining the

eigenvalues of two nonnegative matrices.

Theorem 3.5. Suppose that A ∈ Mn(R+) realizes Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, where

σj ∈ C and
∑k

j=1 µj = n, B ∈ Mm(R+) realizes Γ = {(γ1, ν1), (γ2, ν2), ..., (γk, νk)}, where γj ∈ C

and
∑k

j=1 νj = m, and such that σ1 ≥ |σj | and γ1 ≥ |γj | for j > 1. Let v be a normalized

eigenvector corresponding to the dominant eigenvalue γ1 of the matrix B. If A has the form

A1 a

bt γ1

 ,

where A1 ∈ Mn−1(R+), and a and b are two vectors in Rn−1, then C ∈ Mn+m−1(R+) having the

form

A1 avt

vbt B



realizes the set Σ ∪ Γ′ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}
⋃
{(γ1, ν1 − 1), (γ2, ν2), (γ3, ν3), ..., (γk, νk)}.

Proof. Starting with v, which by assumption is a normalized eigenvector corresponding to the

dominant eigenvalue γ1 of the nonnegative matrix B, we can compute (by using the Gram-Schmidt

algorithm and then normalizing) an orthonormal basis {v, w1, ..., wm−1} for Cm. Let W1 be an

m × (m − 1) matrix whose columns are the orthonormal basis vectors w1,...,wn−1. Then the

augmented matrix Y1 = (v W1) is unitary. Thus, we have that

BY1 = B (v W1) = (Bv BW1) = (γ1v BW1) ,

and using the inverse Y∗1 , we have that
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Y∗1BY1 =

 v∗

W∗1

(γ1v BW1

)
=

 v∗γ1v v∗BW1

W∗1γ1v W∗1BW1

 =

 γ1v
∗v v∗BW1

γ1W∗1v W∗1BW1



=



γ1 v∗BW1 ...

0
... B̂

0


=: B1,

where the matrix B1 is gotten from the fact that v∗v = 1, W∗1v =


0
...

0

 from orthogonality of the

vectors in {v, w1, ..., wm−1}, and the entry W∗1BW1 = B̂, which is an (m− 1)× (m− 1) block. Now

since B is similar to B1, and B realizes Γ = {(γ1, ν1), (γ2, ν2), ..., (γk, νk)} by assumption, then B1

realizes Γ, too. As the characteristic polynomial of B1 is PB1(γ) = det [B1 − γI] , which is easily

computed by expansion by minors from expanding along the first column of B1, we see that

PB1(γ) = det [B1 − γI] = (γ1 − γ) det
[
B̂ − γI

]
,

and it follows that the block B̂ realizes the set Γ′ = {(γ1, ν1−1), (γ2, ν2), ..., (γk, νk)}. Now, applying

the Shur decomposition theorem, there exists an (m − 1) × (m − 1) unitary matrix W2 such that

W∗2 B̂W2 = T̂B, where T̂B is an upper-triangular matrix with the eigenvalues γ2, ..., γk, counting

multiplicity, on the diagonal.

Now define

Y2 =



1 0... 0

0

... W2

0


.
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As W2 is unitary, Y2 is also unitary, and we have that

Y∗2B1Y2 = Y∗2 (Y∗1BY1)Y2 = (Y1Y2)∗ B (Y1Y2) = Y∗BY,

where Y = (Y1Y2). Then

Y = Y1Y2 = (v W1)Y2

= (v W1)



1 0... 0

0

... W2

0


=
(
v W1W2

)
=
(
v T

)
,

where T =W1W2, and so

Y∗ =

v∗

T ∗

 .

Since Y is a product of unitary matrices Y1 and Y2, then it follows that Y is again a unitary matrix,

of size m×m. T is an m× (m− 1) submatrix. Using the fact that Y is unitary, we have that

YY∗ =
(
v T

)v∗

T ∗

 = vv∗ + T T ∗ = Im (34)

and

Y∗Y =

v∗

T ∗

(v T
)

=

v∗v v∗T

T ∗v T ∗T

 =

 1 v∗W1W2

W∗2W∗1v W∗2W∗1W1W2

 =

 1 01×(m−1)

0(m−1)×1 I(m−1)

 ,

where the last matrix is gotten from the fact that v∗v = 1, W1 and W2 are unitary, which reduces

W∗2W∗1W1W2 to the identity matrix of size (m− 1), and v is orthogonal to the vectors in W1.
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Now we observe that

Y∗BY =

v∗

T ∗

B (v T
)

=

v∗

T ∗

(Bv BT
)

=

v∗Bv v∗BT

T ∗Bv T ∗BT

 =

 v∗γ1v v∗BT

W∗2W∗1γ1v W∗2W∗1BW1W2



=

 γ1 v∗BT

W∗2γ1(W∗1v) W∗2 (W∗1BW1)W2



=

 γ1 v∗BT

0(m−1)×1 W∗2 B̂W2



=

 γ1 v∗BT

0(m−1)×1 T̂B

 ,

which is gotten from the fact thatW∗1BW1 = B̂ andW∗2 B̂W2 = T̂B. This matrix is upper-triangular

and realizes the set Γ = {(γ1, ν1), (γ2, ν2), ..., (γk, νk)}.

Turning our attention to the n×n nonnegative matrix A, we apply the Shur decomposition theorem

again to get that

X ∗AX = TA,

where X is a unitary matrix and TA is upper triangular and realizes the set Σ =

{(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, since TA is similar to A, which realizes Σ by assumption. We may

partition X into two block matrices, an (n− 1)× n block V and a 1× n block K:

X =

V
K

 ,

which implies that

X ∗ =
(
V∗ K∗

)
.
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Using the fact that X is unitary, we have that

XX ∗ =

VV∗ VK∗
KV∗ KK∗

 =

 In−1 0(n−1)×1

01×(n−1) 1



and

X ∗X = V∗V +K∗K = In×n. (35)

Now assuming that A has the form

A1 a

bt γ1

 ,

it follows that

TA = X ∗AX = X ∗

A1 a

bt γ1

X

=
(
V∗ K∗

)A1 a

bt γ1


V
K



=
(
V∗A1 +K∗bt V∗a+K∗γ1

)V
K



= V∗A1V +K∗btV + V∗aK +K∗γ1K. (36)

Now we consider two matrices of size (n+m− 1)× (n+m− 1):

Z =

 V 0

vK T


and its conjugate transpose
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Z∗ =

V∗ K∗v∗
0 T ∗

 .

Since V has orthonormal rows, VV∗ = I(n−1), and since the vectors in V are orthogonal to the

vectors in K, then VK∗v∗ = 0 and vKV∗ = 0. Moreover, K also has orthonormal rows, so KK∗ = 1,

and from equation (34) we know that vKK∗v∗ + T T ∗ = vv∗ + T T ∗ = Im. Thus, we have that

ZZ∗ =

 V 0

vK T


V∗ K∗v∗

0 T ∗

 =

 VV∗ VK∗v∗

vKV∗ vKK∗v∗ + T T ∗

 =

In−1 0

0 Im

 .

We also have

Z∗Z =

V∗ K∗v∗
0 T ∗


 V 0

vK T

 =

V∗V +K∗v∗vK K∗v∗T

T ∗vK T ∗T

 =

In 0

0 Im−1

 ,

where the last matrix is gotten from the fact that V∗V+K∗v∗vK = V∗V+K∗K = In×n by equation

(35), T =W1W2 and v is orthogonal to W1, and T ∗T =W∗2W∗1W1W2 = Im−1. Thus, we see that

Z is unitary. Now we consider an (n+m− 1)× (n+m− 1) nonnegative matrix C of the form

A1 avt

vbt B


and compute Z∗CZ, getting

Z∗CZ =

V
∗ K∗v∗

0 T ∗


A1 avt

vbt B


 V 0

vK T



=

V∗A1 +K∗(v∗v)bt V∗avt +K∗v∗B

T ∗vbt T ∗B


 V 0

vK T
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=

V
∗A1V +K∗btV + V∗avtvK +K∗v∗BvK V∗avtT +K∗v∗BT

T ∗vbtV + T ∗BvK T ∗BT



=

V
∗A1V +K∗btV + V∗aK +K∗v∗(γ1v)K V∗avtT +K∗v∗BT

T ∗vbtV + T ∗γ1vK T ∗BT



=

V
∗A1V +K∗btV + V∗aK +K∗γ1K V∗avtT +K∗v∗BT

T ∗vbtV + T ∗γ1vK T ∗BT

 . (37)

Now using equation (36), the upper left corner is just TA, and the lower right corner simplifies to

T ∗BT =W∗2 (W∗1BW1)W2 =W∗2 B̂W2 = T̂B.

Moreover, as T ∗ =W∗2W∗1 and v is orthogonal toW1, then the lower left corner reduces to the zero

matrix of size (m− 1)× n, and so Z∗CZ reduces to:

Z∗CZ =

 TA V∗avtT +K∗v∗BT

0(m−1)×n T̂B

 ,

which is upper-triangular, and so its eigenvalues are just the eigenvalues of the blocks TA and

T̂B. Since TA realizes Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)} and T̂B realizes Γ′ = {(γ1, ν1 −

1), (γ2, ν2), ..., (γk, νk)}, it follows that Z∗CZ realizes the set

Σ ∪ Γ′ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}
⋃
{(γ1, ν1 − 1), (γ2, ν2), ..., (γk, νk)}.

Finally, as Z∗CZ is similar to C, we must have that

C =

A1 avt

vbt B
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realizes the set Σ ∪ Γ′, and is nonnegative by assumption, and this completes the proof. �

Theorem 3.5 is the main tool that we will use now to construct nonnegative matrices that solve

the RNIEP. Recall that, by the Perron-Frobenius theorem, nonnegative matrices have a dominant

eigenvalue σ1 that is nonnegative. Now with prescribed eigenvalues σj ∈ R, relabeling the indices

as needed, we order the eigenvalues

σ1 ≥ σ2 ≥ ... ≥ σj ≥ 0 ≥ σj+1 ≥ ... ≥ σk

and assume that

σ1 + σ2 + σ3 + ... =
k∑
j=1

σj ≥ 0.

Remark. It is worth noting that these conditions are weaker than that of Suleimanova’s [7], which

required (n− 1) negative eigenvalues and precisely one positive eigenvalue.

Step 1: We start by building nonnegative matrices of size 2× 2, which by Theorem 2.1, can only

have real eigenvalues. We consider two cases:

Case 1: Suppose that σ1 ≥ 0 and σ2 ≥ 0.

The diagonal matrix

A =

σ2 0

0 σ1



realizes Σ = {(σ1, 1), (σ2, 1)} and is nonnegative.

Case 2: Suppose that σ1 ≥ 0 and σ2 < 0.

It is easy to check that the matrix

A =

 0
√
−σ2σ1

√
−σ2σ1 σ1 + σ2



realizes Σ = {(σ1, 1), (σ2, 1)} and is nonnegative.
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Step 2: We then construct nonnegative matrices of size 3×3, using the 2×2 nonnegative matrices

previously constructed; we want to choose 2× 2 nonnegative matrices Bi that have eigenvalues σ3

and A(2, 2), where A(i, j) is the (i, j) entry of A, chosen suitably depending on the sign of σ2. The

idea is to make the lower right corner A(2, 2) of A the dominant eigenvalue of the matrix Bi, so

that A will have the required form for Theorem 3.5 to be applicable. We consider three cases:

Case 1: Suppose that σ1 ≥ 0, σ2 ≥ 0, σ3 ≥ 0.

A nonnegative realizing matrix is obvious here, but nevertheless we start with the algorithm here

to give motivation. Using the 2× 2 nonnegative matrices previously constructed, since σ2 ≥ 0, we

choose

A =

σ2 0

0 σ1



and let

B1 =

σ3 0

0 σ1

 ,

so that A realizes {(σ1, 1), (σ2, 1)} and B1 realizes {(σ1, 1), (σ3, 1)}. Note that the lower right

corner A(2, 2) of A is the dominant eigenvalue of B1, which is required in order for Theorem

3.5 to be applicable. Now we use A and B1, and choose a normalized, nonnegative eigenvector v1

corresponding to the dominant eigenvalue of B1, which is possible by the Perron-Frobenius theorem,

to construct

C1 =

 σ2 A(1, 2)vt1

v1A(1, 2) B1

 ,

which is of size 3×3. It is clear that C1 is nonnegative and in the required form for Theorem 3.5 to be

applicable; now we can apply Theorem 3.5, and it follows that C1 realizes {(σ1, 1), (σ2, 1), (σ3, 1)}.

Of course, since the entry A(1, 2) is zero, C1 is the diagonal matrix:
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C1 =

 σ2 A(1, 2)vt1

v1A(1, 2) B1

 =


σ2 0 0

0 σ3 0

0 0 σ1

 .

The case where σ1 ≥ 0, σ2 < 0, and σ3 ≥ 0 is not possible, since σ1 ≥ σ2 ≥ σ3, by assumption.

Case 2: Suppose that σ1 ≥ 0, σ2 ≥ 0, σ3 < 0.

Using the 2× 2 nonnegative matrices previously constructed, since σ2 ≥ 0, we choose

A =

σ2 0

0 σ1



and let

B1 =

 0
√
−σ3σ1

√
−σ3σ1 σ3 + σ1

 ,

so that A realizes {(σ1, 1), (σ2, 1)} and B1 realizes {(σ1, 1), (σ3, 1)}. The lower right corner A(2, 2)

of A is the dominant eigenvalue of B1, which is required in order for Theorem 3.5 to be applicable.

Now we use A and B1, and choose a normalized, nonnegative eigenvector v1 corresponding to the

dominant eigenvalue of B1, which is possible by the Perron-Frobenius theorem, to construct

C1 =

 σ2 A(1, 2)vt1

v1A(1, 2) B1

 =

σ2 0

0 B1

 ,

which is of size 3 × 3. C1 is clearly nonnegative and in the form required for Theorem 3.5 to be

applicable. Now we can apply Theorem 3.5, and it follows that
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C1 =


σ2 0 0

0 0
√
−σ3σ1

0
√
−σ3σ1 σ3 + σ1



is nonnegative and realizes {(σ1, 1), (σ2, 1), (σ3, 1)}.

Case 3: Suppose σ1 ≥ 0, σ2 < 0, σ3 < 0.

Using the 2× 2 nonnegative matrices previously constructed, since σ2 < 0, we choose

A =

 0
√
−σ2σ1

√
−σ2σ1 σ1 + σ2



and let

B1 =

 0
√
−σ3(σ1 + σ2)√

−σ3(σ1 + σ2) σ3 + (σ1 + σ2)

 ,

so that A realizes {(σ1, 1), (σ2, 1)} and B1 realizes {(σ1 + σ2), 1), (σ3, 1)}. The lower right corner

A(2, 2) of A is the dominant eigenvalue of B1, which is required in order for Theorem 3.5 to be ap-

plicable. Now we use A and B1, and choose a normalized, nonnegative eigenvector v1 corresponding

to the dominant eigenvalue of B1, which is possible by the Perron-Frobenius theorem, to construct

C1 =

 0
√
−σ2σ1vt1

v1
√
−σ2σ1 B1

 ,

which is of size 3 × 3. C1 is clearly nonnegative and in the form required for Theorem 3.5 to be

applicable; now we can apply Theorem 3.5, and it follows that
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C1 =


0

√
−σ2σ1v(1)1

√
−σ2σ1v(2)1

v
(1)
1

√
−σ2σ1 0

√
−σ3(σ1 + σ2)

v
(2)
1

√
−σ2σ1

√
−σ3(σ1 + σ2) σ3 + (σ1 + σ2)

 ,

where v
(i)
1 is the ith component of v1, is nonnegative and realizes {(σ1, 1), (σ2, 1), (σ3, 1)}.

Step 3: Now we can proceed recursively. To construct 4 × 4 nonnegative matrices, we start by

first redefining the matrices C1 = A and then making its lower right corner A(3, 3) the dominant

eigenvalue of a matrix B2, which needs to be nonnegative and have eigenvalues σ4 and A(3, 3).

This puts A in the form required to apply Theorem 3.5, and we can build the 4 × 4 nonnegative

matrices using the information from A and B2. We consider four cases:

Case 1: Suppose that σ1 ≥ 0, σ2 ≥ 0, σ3 ≥ 0, σ4 ≥ 0.

We choose C1 suitably and redefine

A = C1 =

 σ2 A(1, 2)vt1

v1A(1, 2) B1

 =


σ2 0 0

0 σ3 0

0 0 σ1

 ,

and let

B2 =

σ4 0

0 σ1

 ,

so that A(3, 3) is the dominant eigenvalue of B2, and B2 has σ4 and A(3, 3) as its eigenvalues. Now

we construct

C2 =

 A2×2 A(1 : 2, 3)vt2

v2A(1 : 2, 3) B2

 ,
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where A(1 : 2, 3) is the column vector (A(1, 3),A(2, 3))t, v2 is a normalized, nonnegative eigenvector

corresponding to the dominant eigenvalue of B2, and A2×2 is the 2×2 block on the upper left corner

of A. Clearly, C2 is nonnegative, and since all the assumptions of Theorem 3.5 are satisfied, we

may apply the theorem - and it is obvious that

C2 =



σ2 0 0 0

0 σ3 0 0

0 0 σ4 0

0 0 0 σ1



realizes {(σ1, 1), (σ2, 1), (σ3, 1), (σ4, 1)}.

Case 2: Suppose that σ1 ≥ 0, σ2 ≥ 0, σ3 ≥ 0, σ4 < 0.

Choosing C1 suitably, we redefine

A = C1 =

 σ2 A(1, 2)vt1

v1A(1, 2) B1

 =


σ2 0 0

0 σ3 0

0 0 σ1

 .

and let

B2 =

 0
√
−σ4σ1

√
−σ4σ1 σ4 + σ1

 ,

so that A(3, 3) is the dominant eigenvalue of B2, and B2 has σ4 and A(3, 3) as its eigenvalues. Now

we construct

C2 =

 A2×2 A(1 : 2, 3)vt2

v2A(1 : 2, 3)t B2

 ,
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where A(1 : 2, 3) is the column vector (A(1, 3),A(2, 3))t, v2 is a normalized, nonnegative eigenvector

corresponding to the dominant eigenvalue of B2, and A2×2 is the 2×2 block on the upper left corner

of A. By inspection, C2 is nonnegative. Since all the assumptions of Theorem 3.5 are satisfied, we

may apply the theorem, and thus

C2 =



σ2 0 0 0

0 σ3 0 0

0 0 0
√
−σ4σ1

0 0
√
−σ4σ1 σ4 + σ1



is nonnegative and realizes {(σ1, 1), (σ2, 1), (σ3, 1), (σ4, 1)}.

Case 3: Suppose that σ1 ≥ 0, σ2 ≥ 0, σ3 < 0, σ4 < 0.

Choosing C1 suitably, we redefine

A = C1 =


σ2 0 0

0 0
√
−σ3σ1

0
√
−σ3σ1 σ3 + σ1


and let

B2 =

 0
√
−σ4(σ3 + σ1)√

−σ4(σ3 + σ1) σ4 + (σ3 + σ1)

 ,

so that A(3, 3) is the dominant eigenvalue of B2, and B2 has σ4 and A(3, 3) as its eigenvalues. Now

we construct

C2 =

 A2×2 A(1 : 2, 3)vt2

v2A(1 : 2, 3)t B2

 ,
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where v2 is a normalized, nonnegative eigenvector corresponding to the dominant eigenvalue of

B2, A(1 : 2, 3) is the column vector (A(1, 3),A(2, 3))t, and A2×2 is the 2 × 2 block on the upper

left corner of A. By inspection, C2 is nonnegative. Since all the assumptions of Theorem 3.5 are

satisfied, we may apply the theorem, and it follows that

C2 =



σ2 0 A(1, 3)v
(1)
2 A(1, 3)v

(2)
2

0 0 A(2, 3)v
(1)
2 A(2, 3)v

(2)
2

v
(1)
2 A(1, 3) v

(1)
2 A(2, 3) 0

√
−σ4(σ3 + σ1)

v
(2)
2 A(1, 3) v

(2)
2 A(2, 3)

√
−σ4(σ3 + σ1) σ4 + (σ3 + σ1)


,

where v
(i)
2 is the ith component of v2, is nonnegative and realizes {(σ1, 1), (σ2, 1), (σ3, 1), (σ4, 1)}.

Case 4: Suppose that σ1 ≥ 0, σ2 < 0, σ3 < 0, σ4 < 0.

Choosing C1 suitably, we redefine

A = C1 =


0

√
−σ2σ1v(1)1

√
−σ2σ1v(2)1

v
(1)
1

√
−σ2σ1 0

√
−σ3(σ1 + σ2)

v
(2)
1

√
−σ2σ1

√
−σ3(σ1 + σ2) σ3 + (σ1 + σ2)

 ,

and let

B2 =

 0
√
−σ4(σ3 + (σ1 + σ2))√

−σ4(σ3 + (σ1 + σ2)) σ4 + (σ3 + (σ1 + σ2))

 ,

so that A(3, 3) is the dominant eigenvalue of B2, and B2 has σ4 and A(3, 3) as its eigenvalues. Now

we construct

C2 =

 A2×2 A(1 : 2, 3)vt2

v2A(1 : 2, 3)t B2

 ,
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where v2 is a normalized, nonnegative eigenvector corresponding to the dominant eigenvalue of

B2, A(1 : 2, 3) is the column vector (A(1, 3),A(2, 3))t, and A2×2 is the 2 × 2 block on the upper

left corner of A. By inspection, C2 is nonnegative. Since all the assumptions of Theorem 3.5 are

satisfied, we may apply the theorem, and it follows that

C2 =



0
√
−σ2σ1v(1)1 A(1, 3)v

(1)
2 A(1, 3)v

(2)
2

v
(1)
1

√
−σ2σ1 0 A(2, 3)v

(1)
2 A(2, 3)v

(2)
2

v
(1)
2 A(1, 3) v

(1)
2 A(2, 3) 0

√
−σ4(σ3 + (σ1 + σ2))

v
(2)
2 A(1, 3) v

(2)
2 A(2, 3)

√
−σ4(σ3 + (σ1 + σ2)) σ4 + (σ3 + (σ1 + σ2))


,

where v
(i)
1 and v

(i)
2 are the ith components of v1 and v2, respectively, is nonnegative and realizes

{(σ1, 1), (σ2, 1), (σ3, 1), (σ4, 1)}.

Step n-1: Via this recursion process, and counting multiplicity of the eigenvalues at each step, at

the beginning of step n−1 we will have obtained nonnegative matrices Cn−3 of size (n−1)× (n−1)

that realize Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, with σj ∈ R and
∑k

j=1 µj = n − 1. Now choosing

Cn−3 suitably and redefining it to be A, we construct a 2× 2 nonnegative matrix Bn−2 in terms of

A, so that it has eigenvalues σk+1 and A(n − 1, n − 1), which is the lower right corner of A and

also the dominant eigenvalue of Bn−2. Specifically, if σk+1 ≥ 0, let

Bn−2 =

σk+1 0

0 A(n− 1, n− 1)

 ,

and if σk+1 < 0, let

Bn−2 =

 0
√
−σk+1A(n− 1, n− 1)

√
−σk+1A(n− 1, n− 1) σk+1 +A(n− 1, n− 1)

 .

Now using the matrices A and Bn−2, and choosing a normalized, nonnegative eigenvector vn−2

corresponding to the dominant eigenvalue of Bn−2, we construct an n× n matrix
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Cn−2 =

 A(n−2)×(n−2) A(1 : n− 2, n− 1)(vn−2)
t

vn−2A(1 : n− 2, n− 1)t Bn−2

 ,

where A(1 : n− 2, n− 1) is the column vector (A(1, n− 1), ..., (A(n− 2, n− 1))t and A(n−2)×(n−2)

is the (n − 2) × (n − 2) block on the upper left corner of A. By inspection, Cn−2 is nonnegative;

and since all the assumptions of Theorem 3.5 are satisfied, we may apply the theorem, and thus if

σk+1 = σk, then Cn−2 realizes Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk + 1)}, or if σk+1 6= σk, then Cn−2

realizes Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk), (σk+1, 1)}, solving the RNIEP, as required.

Example 3.6

Given Σ = {(σ1, µ1), (σ2, µ2), (σ3, µ3), (σ4, µ4)} = {(4, 1), (7, 1), (−3, 1, ), (−29
9 , 1)}, we first order

the σj :

7 ≥ 4 ≥ 0 ≥ −3 ≥ −29

9
,

and it is clear that
∑4

j=1 σj ≥ 0, so we may implement the algorithm.

We choose the initial nonnegative matrix as

A =

4 0

0 7

 ,

and let

B1 =

 0
√

(3)(7)

√
(3)(7) −3 + 7

 ,

so that A realizes {(4, 1), (7, 1)} and B1 realizes {(−3, 1), (7, 1)}. Note that the lower right corner

A(2, 2) ofA is the dominant eigenvalue of the nonnegative matrix B1. UsingA, B1, and a normalized

nonnegative eigenvector v1 corresponding to the dominant eigenvalue of B1, we construct a 3 × 3

nonnegative matrix
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C1 =


4 A(1, 2)v

(1)
1 A(1, 2)v

(2)
1

v
(1)
1 A(1, 2) 0

√
(3)(7)

v
(2)
1 A(1, 2)

√
(3)(7) −3 + 7

 =


4 0 0

0 0
√

21

0
√

21 4

 ,

which realizes {(4, 1), (7, 1), (−3, 1)}.

Now we redefine

A = C1 =


4 0 0

0 0
√

21

0
√

21 4

 ,

and let

B2 =

 0
√

29
9 (4)√

29
9 (4) −29

9 + 4

 ,

so that B2 is nonnegative and realizes {(−29
9 , 1), (4, 1)}. In particular, B2 has the lower right corner

A(3, 3) of A as its dominant eigenvalue. A normalized nonnegative eigenvector v2 corresponding to

the dominant eigenvalue of B2 is
(√

29
65 ,

6√
65

)t
. Using A, B2,

(√
29
65 ,

6√
65

)t
, and the column vector

A(1 : 2, 3) =
(
0,
√

21
)t

, we construct a 4× 4 nonnegative matrix

C2 =



4 0 0 0

0 0
√

21
√

29
65

√
21 6√

65

0
√

29
65

√
21 0

√
29
9 (4)

0 6√
65

√
21

√
29
9 (4) −29

9 + 4
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=



4 0 0 0

0 0
√

609
65 6

√
21
65

0
√

609
65 0 2

√
29
3

0 6
√

21
65

2
√
29
3

7
9


,

and it is easy to check that C2 realizes Σ = {(4, 1), (7, 1), (−3, 1, ), (−29
9 , 1)}, as required.

4. Solvability of the NIEP, for n = 3

Next, we study the solvability of the NIEP for the case n = 3; this result is due to Loewy and

London [2].

Theorem 4.1. Given a set Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, with σj ∈ C and
∑k

j=1 µj = 3,

there exists A ∈ M3(R+) that realizes Σ if and only if either σ1, σ2, σ3 ∈ R or (up to ordering)

σ1 ∈ R, σ2 and σ3 is a complex conjugate pair, and such that the following conditions hold:

(i)

(
max
1≤j≤3

|σj |, µjmax

)
∈ Σ

(ii) for every pair (σj , µj) in Σ, the pair (σ̄j , µj) is also in Σ

(iii) s1(Σ) = tr(A) = σ1 + σ2 + σ3 ≥ 0

(iv) [s1(Σ)]2 ≤ 3s2(Σ)

Proof. First, suppose we have conditions (i)-(iv) and that Σ = {(ρ, 1), (reiθ, 1), (re−iθ, 1)}, where

0 < θ < π and 0 < r ≤ ρ (by the Perron-Frobenius theorem). Without loss of generality, we may

assume that Σ = {(ρ, 1), (eiθ, 1), (e−iθ, 1)}. Then the Perron-Frobenius theorem tells us that ρ ≥ 1.

Consider the all-ones matrix

T =


1 1 1

1 1 1

1 1 1

 ,
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which is symmetric and thus, by the spectral theorem, is diagonalizable by an orthogonal matrix;

one possible diagonalizing U is given by

U =
1√
6



√
2
√

3 −1

√
2 0 2

√
2 −

√
3 −1

 , (38)

and we have that

U tT U =


3 0 0

0 0 0

0 0 0

 .

We will use T to help construct A. First, the matrix

A′ =


ρ 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

 ,

by Theorem 1.1, realizes Σ; however, this matrix is not nonnegative. Instead, we first decompose

the matrix into a sum of a diagonal matrix and a block-diagonal matrix containing a 2× 2 rotation

block:

A′ =


ρ 0 0

0 0 0

0 0 0

+


0 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)
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=
ρ

3


3 0 0

0 0 0

0 0 0

+


0 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

 .

Now using (38), we have that

UA′U t = U


ρ

3


3 0 0

0 0 0

0 0 0

+


0 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)



U t

=
ρ

3
U


3 0 0

0 0 0

0 0 0

U
t + U


0 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

U
t

=
ρ

3


1 1 1

1 1 1

1 1 1

+
1√
6



√
2
√

3 −1

√
2 0 2

√
2 −

√
3 −1




0 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

U
t

=
ρ

3


1 1 1

1 1 1

1 1 1

+


0 cos(θ)

2
√
3

+ sin(θ)
6

sin(θ)

2
√
3
− cos(θ)

6

0 − sin(θ)
3

cos(θ)
3

0 sin(θ)
6 − cos(θ)

2
√
3
− cos(θ)

6 − sin(θ)

2
√
3

U
t
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=
ρ

3


1 1 1

1 1 1

1 1 1

+


0 cos(θ)

2
√
3

+ sin(θ)
6

sin(θ)

2
√
3
− cos(θ)

6

0 − sin(θ)
3

cos(θ)
3

0 sin(θ)
6 − cos(θ)

2
√
3
− cos(θ)

6 − sin(θ)

2
√
3


1√
6



√
2
√

2
√

2

√
3 0 −

√
3

−1 2 −1



=
ρ

3


1 1 1

1 1 1

1 1 1

+



cos(θ)
6 +

√
3
(
cos(θ)

2
√
3

+ sin(θ)
6

)
− sin(θ)

2
√
3

2
(
sin(θ)

2
√
3
− cos(θ)

6

)
cos(θ)

6 −
√

3
(
cos(θ)

2
√
3

+ sin(θ)
6

)
− sin(θ)

2
√
3

− cos(θ)
3 − sin(θ)√

3

2 cos(θ)
3

sin(θ)√
3
− cos(θ)

3

cos(θ)
6 +

√
3
(
sin(θ)

6 − cos(θ)

2
√
3

)
+ sin(θ)

2
√
3

2
(
− cos(θ)

6 − sin(θ)

2
√
3

)
cos(θ)

6 −
√

3
(
sin(θ)

6 − cos(θ)

2
√
3

)
+ sin(θ)

2
√
3


.

Simplifying the upper-left entry of the second matrix gives

cos(θ)

6
+
√

3

(
cos(θ)

2
√

3
+

sin(θ)

6

)
− sin(θ)

2
√

3

=
cos(θ)

6
+

cos(θ)

2
+

√
3 sin(θ)

6
− sin(θ)

2
√

3

=
cos(θ)

6
+

3 cos(θ)

6
+

√
3 sin(θ)

6
−
√

3 sin(θ)

6

=
2

3
cos(θ).

Simplifying the (2,1) entry of the second matrix gives

−cos(θ)

3
− sin(θ)√

3

= −1

3

(
cos(θ) +

√
3 sin(θ)

)
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= −1

3

(
2

1

2
cos(θ) + 2

√
3

2
sin(θ)

)

= −1

3

(
2 cos

(π
3

)
cos(θ) + 2 sin

(π
3

)
sin(θ)

)
= −2

3
cos
(π

3
− θ
)
.

We repeat this process to express every entry of the second matrix in terms of cos(θ), and UA′U t

simplifies to

ρ

3


1 1 1

1 1 1

1 1 1

−
2

3


− cos(θ) cos

(
π
3 + θ

)
cos
(
π
3 − θ

)
cos
(
π
3 − θ

)
− cos(θ) cos

(
π
3 + θ

)
cos
(
π
3 + θ

)
cos
(
π
3 − θ

)
− cos(θ)



=
1

3


ρ+ 2 cos(θ) ρ− 2 cos

(
π
3 + θ

)
ρ− 2 cos

(
π
3 − θ

)
ρ− 2 cos

(
π
3 − θ

)
ρ+ 2 cos(θ) ρ− 2 cos

(
π
3 + θ

)
ρ− 2 cos

(
π
3 + θ

)
ρ− 2 cos

(
π
3 − θ

)
ρ+ 2 cos(θ)


=: A.

Since A is similar to A′, we know that A also realizes Σ; so it remains to show that the entries of

A are nonnegative. Using condition (iii) and the structure of Σ, we have that

ρ+ 2 cos(θ) ≥ 0. (39)

Moreover, using condition (iv), we have that

(ρ+ 2 cos(θ))2 ≤ 3
(
ρ2 + ei2θ + e−i2θ

)
= 3(ρ2 + 2 cos(2θ)),

which implies that

3(ρ2 + 2 cos(2θ))− (ρ+ 2 cos(θ))2 ≥ 0.

But

3(ρ2 + 2 cos(2θ))− (ρ+ 2 cos(θ))2 = 2(ρ2 − 2ρ cos(θ) + cos2(θ)− 3 sin2(θ)),
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thus we have that

ρ2 − 2ρ cos(θ) + cos2(θ)− 3 sin2(θ) ≥ 0.

Now since

−2 cos
(π

3
+ θ
)

= − cos(θ) +
√

3 sin(θ)

and

−2 cos
(π

3
− θ
)

= − cos(θ)−
√

3 sin(θ),

we can factor the left-hand side, getting the constraint:

(
ρ− 2 cos

(π
3

+ θ
))(

ρ− 2 cos
(π

3
− θ
))
≥ 0. (40)

As 0 < θ < π, we know that

−1 ≤ cos
(π

3
+ θ
)
<

1

2
,

which implies that

−2 ≤ 2 cos
(π

3
+ θ
)
< 1;

and by the Perron-Frobenius theorem, we know that ρ ≥ 1, so the first factor on the left-hand side

of (40) is strictly positive: (
ρ− 2 cos

(π
3

+ θ
))

> 0, (41)

which then forces the second factor to be nonnegative:

(
ρ− 2 cos

(π
3
π − θ

))
≥ 0. (42)

Putting this all together, the constraints (39), (41), and (42) force A to be nonnegative, as required.

For the case where σj are all real, we may simply apply the algorithm from Section 3.

Proving the converse, suppose that there exists A ∈ M3(R+) that realizes Σ. Since its char-

acteristic polynomial has real coefficients, any complex eigenvalues must come in conjugate pairs.

And so either σ1, σ2 and σ3 are all real, or (up to ordering) σ1 is real and σ2 and σ3 is a com-

plex conjugate pair. Moreover, condition(i) is true by the Perron-Frobenius theorem, condition(ii)

follows from Theorem 1.1, condition(iii) is true since A is nonnegative (and so it has nonnegative

trace), and condition(iv) follows from Theorem 3.1. �
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5. Conclusion

In this thesis, we gave a self-contained introduction to the NIEP and completely solve the problem

for n = 2 and n = 3. We also used a theorem for combining eigenvalues of nonnegative matrices

and the Perron-Frobenius theorem to develop an algorithm for solving the RNIEP for generalized n.

Case n = 4 has been completely solved by Torre-Mayo, Abril-Raymondo, Alarcia-Estevez, Marijuan

and Pisonero [11] and independently by Meehan [10]. For n = 5, Meehan and Laffey [12] solved

the NIEP when considering trace zero; the problem for n = 5 for positive trace remains open. And

although the NIEP remains open for n ≥ 5, there is the remarkable result by Boyle and Handelman

[8] which shows that given Σ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk)}, with σj ∈ C and
∑k

j=1 µj = n, there

exists µ0 ∈ N and A ∈Mn+µ0(R+) that realizes Σ′ = {(σ1, µ1), (σ2, µ2), ..., (σk, µk), (0, µ0)}, where

µ0 denotes the multiplicity of the number zero and is sufficiently large. Finding an optimal lower

bound on the number of zeros needed to achieve realizability is currently an active area of research.
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